
Configuration-dependent Stereochemistry in 2,4-Dichloro-3-pentanone-Its Enol Trimethylsilyl Ether Interconversion

Nobujiro SHIMIZU,* Shoichiro MATSUNO, Masayuki TANAKA, and Yuho TSUNO Department of Chemistry, Faculty of Science, Kyushu University,

Hakozaki, Fukuoka 812

 ${\rm Et_3N}$ -promoted enol trimethylsilylation of <u>meso-</u> and <u>dl-2,4-</u> dichloro-3-pentanone in ether respectively shows 97% <u>Z-</u> and 86% <u>E-</u> selectivity, while <u>Z-</u> and <u>E-products respectively give dl (70% de) and meso (24% de) ketones stereoselectively upon protonation.</u>

Stereochemistry of kinetic deprotonation of ketones may be explained by two types of steric interactions of groups on C_{α} with a carbonyl substituent and with an approaching base. 1,2) Here we report a novel example of kinetic deprotonation in which the reaction stereochemistry is mainly controlled by configuration of the carbonyl substituent. Figure 1 shows the reaction of meso-2,4-dichloro-3-pentanone (1a) with 2.2 equiv. Et₃N in the presence of 2.0. equiv chlorotrimethylsilane (TMS-Cl) in ether at 25 °C. 3) The reaction gave preferentially an enol silyl ether 2a of Z-configuration practically in quantitative yield based on the consumed ketone. 4) The Z-content in the product slightly decreased as the reaction progressed. This arises from concomitant occurrence of isomerization of meso-1a to

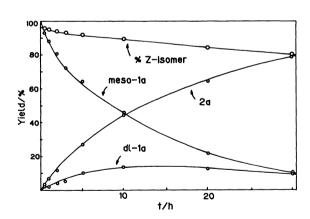


Fig. 1. Enol silylation of meso-1a.

<u>dl</u>-1a during the enol silylation; since the enol silylation proceeded more rapidly than the isomerization, unreacted ketone did not reach equilibrium ($\underline{\text{meso}}/\underline{\text{dl}}=30/70$ at 25 °C) even after 80% completion of the silylation. Both $\underline{\text{E}}-$ and $\underline{\text{Z}}-2a$ did not undergo isomerization under the reaction conditions.⁵) Extrapolation of $\underline{\text{Z}}/\underline{\text{E}}$ ratios to the zero conversion gives a ratio of 97/3 indicating the enol silylation of $\underline{\text{meso}}$ -1a to be highly stereoselective in preference for the formation of $\underline{\text{Z}}$ -isomer

with 94% de. In contrast, a similar analysis for the reaction of \underline{dl} -1a under the same conditions revealed that \underline{dl} -1a predominantly yielded \underline{E} -2a with an extrapolated value of 82% de. These results are interestingly compared with the fact that the enol silylation of 3-chloro-2-butanone (1b) under the same reaction conditions gave a 1:1 mixture of \underline{E} - and \underline{Z} -isomers as for 2-chloro-3-trimethylsiloxy-2-butene.

A large diastereoselectivity (DSS), which is a stereochemical split between the reactions of the two diastereomeric ketones [DSS=%Z (from meso-1a)-%Z (from dl-1a)], strongly suggests the deprotonation of 1a to be a kinetically controlled process, although Et₃N-promoted deprotonation of ketones is generally classified as a thermodynamic process. 6 meso- and dl-1a are equally subject to the steric interactions of $\rm C_{\alpha}$ -groups (Me and Cl) with a carbonyl group R and with Et₃N if R acts as a steric bulk. Clearly the configuration of R plays a major role in controlling the reaction stereochemistry.

Ketonization of 2a to 1a was also diastereoselective. Interestingly, \underline{Z} -2a and \underline{E} -2a respectively gave upon treatment with concd. HCl in THF at 25 O C a 85/15 and a 38/62 mixtures of $\underline{d1}$ - and \underline{meso} -1a showing a reversed diastereoselectivity as compared to the forward reaction. Both ketones did not isomerize significantly to each other under acidic hydrolysis conditions. Thus, the combined results show a peculiar stereochemical cycle in ketone-enolate interconversion (Scheme 1) formally against microscopic reversibility.

meso-1a
$$Z-2a$$
 $Z-2a$ $Z-2a$

Scheme 2.

Stereochemistry of the enol silylation of 1a markedly changes with solvent and base, as shown in Table 1. Polar solvents reduced both stereo- and diastereoselectivities. For example, in DMF the enol silylation occurred much more rapidly but showed lower stereoselectivity than in ether. At -60 °C, both meso- and dl-1a exhibited small Z-selectivity without a significant DSS. It should be noted that this does not arise from a rapid isomerization between meso- and dl-1a; in fact, the enol silylation proceeded much more rapidly than the isomerization in DMF. Replacement of Et_3N with DABCO or n-Bu₃N did not cause a significant change in the stereochemistry but with DBU resulted in a marked decrease in the stereosectivity. Deprotonation with a strong base LDA did not show a significant diastereoselectivity. Both meso- and dl-1a gave exclusively E-2a when the ketone was added to a solution of LDA in the presence of TMS-Cl at -78 °C, although the stereoselectivity significantly decreased under thermodynamic conditions. 7 ,8)

	Reaction condi-	ions	* Z-2ab)	from —	
Base	Solvent	Temp/ ^O C	$\underline{\text{meso-1a}} (t_{1/2})^{c}$	<u>dl</u> -1a (t _{1/2})c)	DSS/%
Et ₃ N	ether	25	97 (14h)	14 (17h)	83
Et ₃ N	С ₆ Н ₆	25	97 (5h)	16 (11h)	81
Et_3N	CH ₂ Cl ₂	25	87 (3h)	38 (4h)	45
Et ₃ N	DMF	25	52 (3m)	41 (3m)	11
Et_3N	DMF	-60	57	60	3
Et ₃ N	DMF/C ₆ H ₆ (1:9	9) 25	88 (2h)	22 (2h)	66
DABCO	с ₆ н ₆	25	94	16	78
n-Bu ₃ N	С ₆ Н ₆	25	92 ^{d)} (v.slow)	15 ^{d)} (v.slow)	77
DBU	С ₆ Н ₆	25	46 ^{e)} (<1m)	9 ^{e)} (<1m)	37
LDAf)	THF	-78	₄ e)	₁₀ e)	6
TDAa)	THF/HMPA (2:) -78	20 ^e)	37 ^e)	17
rDya)	THF	-78	10 ^{e)}	₂₃ e)	13

Table 1. Stereochemistry in Enol Trimethylsilylation of 2,4-Dichloro-3-pentanone (1a)^a)

a) All reactions were carried out by taking la, 2.2 equiv. base, and 2.0 equiv. TMS-Cl in a given solvent (ca. 0.25 M for la). b) Determined by extrapolation to the zero conversion except otherwise noted. c) Time at which 50% of la was converted to 2a. d) Determined after 5% conversion. e) Determined after completion of the reaction. f) la was added to a solution of LDA and TMS-Cl. g) TMS-Cl was added to an enolate solution prepared from 1.0 equiv. LDA.

Precise origin of the large diastereoselectivity for the $\mathrm{Et}_3\mathrm{N-promoted}$ enolation of 1a is not clear yet. One explanation is to assume enolate-like transition states I for $\mathrm{meso}\text{-}1a$ and IV for $\mathrm{dl}\text{-}1a$ in which $\mathrm{C}_\alpha{}'$ -groups take such a conformation that it provides the least hindered space for a coming base, as shown in Scheme 2. Steric difference between I and II and that between IV and III are presumably more pronounced in the less polar media in which the enolate must exist as a contact ion pair. For deprotonation with a strong base like LDA, the structure of the transition state may be close to the most stable conformer of 1a. The observed high $\underline{\mathrm{E}}$ -selectivity would suggest that both meso and dl ketones have stable conformations in which two chlorine atoms on $\mathrm{C}_\alpha{}$ and $\mathrm{C}_\alpha{}'$ lie in $\underline{\mathrm{anti}}$ -clinal regions

Scheme 4.

Scheme 3.

1982 Chemistry Letters, 1989

to the carbonyl plane. This is supported by MM2 calculations which indicate that in a stable conformer, dihedral angles $\text{Cl-C}_{\alpha}\text{-CO}$, $\text{Cl-C}_{\alpha'}\text{-CO}$, $\text{Me-C}_{\alpha}\text{-CO}$, and $\text{Me-C}_{\alpha'}\text{-CO}$ are 163.4, 106.6, 15.7, and 35.8° respectively for meso-1a and 144.0, 144.9, 89.4, and 88.6° for dl-1a.9) Alternatively, diastereoselective formation of enolate might be accomplished by addition of R_3N to carbonyl group 10) followed by subsequent anti elimination of R_3NH^+ , as shown in Scheme 3. The addition is presumably a diastereotopic face-differentiated process for meso-1a, while the additions from a and b faces are identical for dl-1a but the subsequent elimination step would be stereoselective if we assume the least motion. The diastereoselectivity in protonation of 2a may be explained by assuming that the protonation occurs at the olefinic carbon of a preferred conformation of 2a in which an allyllic Me group is anti to the double bond plane, as shown in Scheme 4.11,12) A further study on mechanistic details is under way.

References

- 1) D. Caine, "Carbon-Carbon Bond Formation," Vol. 1, ed by R. L. Augustine, Marcel Dekker, Inc., New York and Basel (1979), Chap. 2.
- C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem., <u>45</u>, 1066 (1980).
- 3) <u>meso-</u> and <u>dl-1a</u> were prepared according to the literature [G. Claeson and A. Thalen, Arkiv Kemi., <u>25</u>, 321 (1965)].
- 4) Stereochemical assignment for \underline{Z} -2a [NMR (CCl₄) δ =0.29 (9H, s), 1.57 (3H, d, \underline{J} =6.5 Hz), 2.14 (3H, s), 4.87 (1H, q, \underline{J} =6.5 Hz)] and \underline{E} -2a [NMR δ =0.29 (9H, s), 1.53 (3H, d, \underline{J} =6.5 Hz), 2.01 (3H, s), 5.30 (1H, q, \underline{J} =6.5 Hz)] was confirmed by a stereospecific conversion to 2,4-dimethyl-2-chloro-8-oxabicyclo[3.2.1]oct-6-en-3-one promoted by silver perchlorate in the presence of furan in nitromethane [N. Shimizu, M. Tanaka, and Y. Tsuno, J. Am. Chem. Soc., $\underline{104}$, 1330 (1982)].
- 5) Prolonged heating under reflux caused elimination of HCl yielding 4-chloro-3-trimethylsiloxy-1,3-pentadiene.
- 6) H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead, J. Org. Chem., <u>34</u>, 2324 (1969).
- Z. A. Fataftah, I. E. Kopka, and M. W. Rathke, J. Am. Chem. Soc., <u>102</u>, 3959 (1980).
- 8) Reaction of 1a with LDA in the presence of TMS-Cl in ether did not give 2a appreciably but yielded 2,4-dichloro-3-trimethylsiloxypentane as the major product.
- 9) Enol silylation of **1b** with LDA at -78 $^{\rm O}$ C in THF gave a 77/23 mixture of E- and \underline{Z} -isomers consistent with MM2 calculations which suggest that a stable conformer of **1b** has a dihedral angle ${\rm Cl}$ - ${\rm Cl}_{\alpha}$ -CO of 141.5 $^{\rm O}$.
- 10) P. Y. Bruice, J. Am. Chem. Soc., <u>105</u>, 4982 (1983).
- 11) M. H. Novice, H. R. Seikaly, A. D. Seiz, and T. T. Tidwell, J. Am. Chem. Soc., <u>102</u>, 5835 (1980).
- 12) 1,2-Asymmetric induction in kinetic protonation of enols has been reported [H. E. Zimmerman and W.-H. Chang, J. Am. Chem. Soc., 81, 3634 (1959)].

(Received August 10, 1989)